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The Problem
 

One cannot effectively solve a problem which one has not adequately and 
accurately describedaccurately described 

Many Remedial Investigations continue for years or even decades 

Many remedies underperform or fail due to a lack of understanding of site 
conditions and processes 

The cost of these failed/underperforming remedies is large 

The costs of excessive long term monitoring programs related to investigating 
sites with monitoring wells is large 

The costs of adequate site characterization (currently referred to as High 
Resolution Site Characterization) which allows one to avoid failed remedies is 
small in comparison but requires an up front investment to result in lower life small in comparison, but requires an up front investment to result in lower life 
cycle costs. 
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History and Development of Contaminant Hydrogeology
 

Historical Perspective – Water 

Supply
 

Aqquifers are: 
• Homogeneous 
• Isotropic 
•• Infinite extent Infinite extent 

Treated as a single 
bulk entityy 
• Transmissivity 
• Storativity 
• How much water can we get How much water can we get 

out of it? 

Area 

Pumping 
Well Land Surface Land Surface 

Water Table 
Aquifer 

Confining 
Unit 

Confined 
Aquifer 

10-Year  Contributing Screened 
Interval 
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Development of (Contaminant) Hydrogeology
 Development of (Contaminant) Hydrogeology
 

~130-Year Era of Homogeneity and Isotropy 

1970’s 1856 1870 1980 1986 2004
 

1863 1935 1979 1981 1994 

Our science is a young one. Our thinking on solute 
transport is powerfully and inappropriately influenced byKey

Point the first 150 years of the development of hydrogeology. Point 
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Development of (Contaminant) Hydrogeology
Development of (Contaminant) Hydrogeology
 

John Cherry – 1981 
“In the early nineteen seventies it became apparent that the approach In the early nineteen seventies, it became apparent that … the approach 
used in the evaluation of contaminant migration in groundwater… involved 
direct adaptations of …monitoring methods and …models of the type 
traditionally used in groundwater resource studies. …the behavior of 
groundwater flow systems is … such that these direct adaptations are 
unsuitable or misleading because of the heterogeneous character of theisleading eterogeneous 
geological deposits and/or the geochemical nature of the contaminant 
species.” 

Our science is a young one. Our thinking on solute 
transport is powerfully and inappropriately influenced byKey

Point the first 150 years of the development of hydrogeology. Point 
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Development of (Contaminant) Hydrogeology
Development of (Contaminant) Hydrogeology
 

C.V. Theis – 1967 “I consider it certain that we need a 
new conceptual model, containing the known 
heteroggeneities of natural aqquifers,,  to expplain the 
phenomenon of transport in groundwater.” 

Our science is a young one. Our thinking on solute 
transport is powerfully and inappropriately influenced byKey

Point the first 150 years of the development of hydrogeology. Point 
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HRSC Today
 

Isotropic,
h 

Incorporation of major paradigms into CSM (e.g.) 
• Heterogeneity and Anisotropy 
• Awareness of spatial structures of key variables 
• DNAPL 
• Weak Transverse Disppersion 
• Matrix diffusion/back diffusion 

homogeneous 

• Incorporation of geologic interpretation (e.g., sequence stratigraphy) in 
CSMs to provide framework for flow systems CSMs to provide framework for flow systems 

Collaborative use of tools 
• Direct sensing for screening, NAPL detection 

G d t /h d  t ti  h  fili i bl • Groundwater/hydrostratigraphy profiling in permeable zones 
• Soil coring and sub core profiling for aquitard/low K material 
• On site analytical chemistry 
Incorporation of the Triad Approach principles 
• Dynamic work Strategies 
•• Real-time data 

Anisotropic,
heterogeneous 

Real time data 
• Collaborative Data 
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HRSC Addresses Two Critical Issues 

Sampling Scale and Data Averaging 
• Measurements must be made at a scale that is meaningful with respect to 

the variability of the quantity being measured 
Coverage 
• Profiles and Transects 
• Horizontal spacing 
• Vertical spacing 

Sampling
Scale and 

Data 
Averaging 

Coverage HRSC 
Data 
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Depth-Integrated, Flow Weighted Averaging
 
El

ev
at

io
nn

(m
)
 

186
 
186
 

184
 
184
 

182
182
 

180
 180
 

178
178
 178
178
 

176
 
176
 

1 10 100 1,000 10,000 100,000
 

10-3 10-2 10-1

PCE (ug/L) 

Hydraulic Conductivity(cm/sec) HydraulicConductivity(cm/sec) 

9 



   
High Resolution (more pixels): 

Sampling Scale and Averaging
Sampling Scale and Averaging
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Sampling Coverage and Density:
 
HRSC Wisdom Through the Ages
HRSC Wisdom Through the Ages
 

Pitkin Cherry Blake 

“You never know what is enough unlessYou never know what is enough, unless 
you know what is more than enough” 

Willi BlWilliam Blakke 

Key The only way to know what degree of resolution you need is to Key 
Point 

The only way to know what degree of resolution you need is to 
look at a high level of resolution. 
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How Much is Enough? What is Right Vertical Spacing?
 

A Profile Through PCE Plume in Sandy Aquifer
 

5 ft. vertical spacingShallow, medium, deep 

2 

0 

m

6 

4 

m
 

10 

8 

14 

12 

Key The vertical spacing you use determines whether you 

16 

Key 
Point 

The vertical spacing you use determines whether you 
understand the nature of the plume or not. 

10 ft. vertical spacing 0.65 ft. vertical spacing
 

PCE µg/LPCE µg/L
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Multi-Level Sampling Transect 
PCE i PCE in a SSanddy AAquif ifer 

Shallow, 
medium, 

deepp 

10 ft10-ft 
vertical 
spacing 

0.8-ft 
vertical 
spacing 
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mm-Scale Textural Changes Control DNAPL Migration
 

Poulsen & Kueper, 1992
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Key DNAPL distribution is controlled by capillary pressures that varyKey 
Point 

DNAPL distribution is controlled by capillary pressures that vary 
at the mm scale. Distribution is very complex. 
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TCETCE 
DNAPLDNAPL 

PlumePlume 

Will the aquitardWill the aquitard DNAPLDNAPL 
the matrix pore waterthe matrix pore water 

DNAPLs Commonly Encounter Aquitards
 

DissolvedDissolved massmass ininDissolvedDissolved massmass inin 

stop the DNAPL?stop the DNAPL?
( Mackay and Cherry, 1989 ) 
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Double Wall, Sealable Joint Sheet Piling Cell Keyed into Aquitard 

CFB Borden 9x9 m Cell CFB Borden 9x9 m Cell 

Courtesy of Beth Parker 
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9 x 9 Meter Cell Experiment CFB Borden
 

770 Liters DNAPL PCE770 Liters DNAPL PCE 
Injected July 1991 DNAPL Distribution after 573 Hours 

17 



 

 

Borden 9x9 m Cell Experiment
 

DNAPL Injjection 1991
 

0
Aquifer 

3.3 

6.0 
Aquitard 

9.0 

Auger Holes 1991-94 9x9m Cell 

0 

DNAPL 

Sand microbed zone 

DNAPL 

Sand microbed zone 
11.5 Aquifer 
13.5 

HSA B HSA Boriing Outtside CCellllO id 

Uh Oh! 

Courtesy of Beth Parker 
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Areal Distribution of DNAPL within Aquitard
 

Section 3
 

DNAPL cell 
ZONE 

DNAPL ONDNAPL ON 
TOP OF 

AQUITARD 

Section 2 

Section 1 

DNAPL 

NO DNAPL 

Section 2
 

0 10 m 

Courtesy of Beth Parker 
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Structure and Pore Fluids Intact
 

Small Scale Features are of Great Import
 

DNAPL (red) migration Sand microbed 
in sand microbed 

Courtesy of Beth Parker 

20 



Essential Information from Cores
 

Geologic/hydrogeologic features 

Physical, chemical & microbial 
properties 

Contaminant mass distributions 
(high- & low-K zones) 

Contaminant phase distributions 
(detection of DNAPL) 

Concentration gradients/diffusive 
fluxes 

Effectiveness of remedial 
technologies 
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Soil Core Sampling - NAPL Detection
 

DNAPLStainless 
massSteel 


Sampler Sorbed 

mass
 

Plunger 

DissolvedDissolved 
mass 

Sudan IV/OilSudan IV/Oil Red ORed OSample 
DDyyeeyyvollume 

00 4 in4 inSoil coreSoil core 
Courtesy of Beth Parker 
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Example of NAPL Detection
 

Sudan IV Screening Quantitative TCE Analyses 
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Groundwater Profiling - WaterlooAPS™ 
Integrated Data AcquisitionIntegrated Data Acquisition 

• Physical Chemical 
Data

• Physical Chemical 
DataData

• Concentration Data
• Hydraulic Head Data
• Index of Hydraulic

Data 
• Concentration Data 
• Hydraulic Head Data 
• Index of Hydraulicy

Conductivity Data
y

Conductivity Data 
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WaterlooAPS™ Configurations
 

Gas-Drive Pump Peristaltic Pump 

Sample Line 

Nitrogen Line 

KPRO Line 

KPRO + Sample Line 

KPRO Line 

1 ¾" Rod 

1¾" Rod 

Reed Valve 

O-rings 

¼" Stainless Steel 
Tubing 

FEP Tubing 

APS APS APS 

225 175 150
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WaterlooAPS™ Data Acquisition 
Configuration and ProcessConfiguration and Process 

Notebook 
Data acquisition 

electronics String potentiometer on drill 
computer 

electronics 
rig/ Geoprobe® measures 
depth 

Real-time Ik and Pressure 

Reversible variable-
speed peristaltic pump 

or gas drive pump 
Water 

Flow meter 
Real time Ik and 

water quality data vacuum gauge or gas-drive pump quality 
sensor 

Valve 

Measures: 
Specific
conductance 
pH 

Pressure 
transducer 

pH 
Dissolved O2 
Oxidation­
reduction 
potential (ORP) 

Compressed 
nitrogen 

Stainless steel 
pressure vessel 
with analyte-free 

water 

1/8” stainless 
steel tubing 

Sample bottles with 
stainless steel holders 

Waterloo profiler tip with 
stainless steel screened 
inlet ports 
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Two Uses of IK Data 

Sample Depth Selection 
Chlorobenzene (µg/L) Stratigraphic Interpretation 
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Post-Remedy Investigation Northern England
 

Key Use of low resolution (conventional) techniques resulted in Key 
Point 

Use of low resolution (conventional) techniques resulted in 
remedy failure and need for second remedy. 
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OU3 Building 106OU3 Building 106OU3 Building 106OU3 Building 106      

 

have been discontinued after 
5 review (2005)  

NAS Jacksonville Investigations 
(J l /A t 2011)(July/August 2011) 

OU3 Building 106OU3 Building 106Building 106Building 106 OU3 Building 106OU3 Building 106 

• Former dry cleaner (1962 – 
1990) 

Building 106Building 106 

1990) 
• PCE and TCE released to 

shallow aquifer 
Building removed• Building removed 

• Interim remedies (AS, SVE) 

yr 

GroundwaterGroundwater 
FlowFlow 

5-yr review (2005) 
• Strong interest in evaluating 

MNA as long-term remedy 

Detailed study locations 
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NAS Jacksonville: Characterization Methods
 

Membrane Interface Probe (MIP) screening 
• Rappid lithology (EC) and contaminant ((ECD, PID)) delineation – qqualitativegy (  )  

WaterlooAPS™ (Advanced Profiler System) 
•• Real time hydrostratigraphyReal-time hydrostratigraphy 
• Targeted groundwater sampling of higher K zones/interfaces 

Geoprobe® HPT (Hydraulic Profiling Tool) 
• Real time hydrostratigraphy 

Continuous cores (Geoprobe® DT System) 
• Detailed lithology delineation 

Subsampling for mass distribution (targeted to lower K zones) • Subsampling for mass distribution (targeted to lower K zones) 

Onsite Laboratory 
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- STONE ENVIRONMENTAL 

Layout of Points at Each Investigation Location
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NAS Jacksonville Composite Dataset 
(OU3(OU3-3 Near Source)3, Near Source) 
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OU3-3: Soil and Groundwater Concentrations
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Approximate boundaries of low K zone based on 
soil lithology

 
 

 

 

OU3-3: MIP (ECD and PID) and Soil Concentrations
 

High Concentration Location: OU3-3 

Electrical Conductivity 
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Collocated Soil Cores Demonstrate Good Correlation
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MIP Provides Mass Location But Not 
Concentration CorrelationConcentration Correlation 
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Conclusion 
The purpose of Site Characterization is to understand the pertinent conditions 
adequately enough to devise an effective remedy. 
• aka CSM  
“Standard” approaches such as monitoring wells are not well suited to the 
development of such an adequate understanding 
• DepthDepth-integrated, flow weighted averagingintegrated, flow weighted averaging 
• Large life-cycle expense 

S lScale off sampling and  d  d data coverage (d  (densitit  y)) must  b  t be appropriiatte tto theli  t  th  
spatial structure of the variable under consideration 
• Hydraulic conductivity, capillary pressure etc. 

Leverage existing data and use screening technologies used to reduce costs 
associated with definitive sampling/analysis programs 

Perhaps it is time to stop calling it “High Resolution” since it is really an 
adequate degree of resolution to understand the pproblem. It is simp y ply Siteadequate deg 
Characterization. 
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