Detailed Structure in Large, Dilute Plumes

Developing Actionable Intel From the Sub-Surface

Fred C. Payne, Ph.D. FRTR – June 20, 2012

Imagine the result

Next Generation Site Characterization -Two Principle Components

- Fundamental Hydrogeology Framework Shift
 - Transition from water supply hydraulics to a more complete picture of hydrogeologic structure
 - Recognize transport and storage zones in the subsurface
- High-Resolution Toolkit
 - Map Hydrogeology and Contaminant Distribution and Transport
 - Separation of site characterization and monitoring processes

Significant gains can be achieved through a shift in hydrogeology framework, independent of high-resolution analysis

Outline

- Higher Resolution Characterization ⇒ Conceptual Model Adjustments
 - Assimilative Capacities of Lower-Permeability Zones
 - Diffusive Exchanges Occur Between Higher- and Lower-Permeability Zones
 - Bulk K and Mass Transfer Geometry Control Plume Propagation and Treatability
 - Contaminant Transport is Typically Found in a Small Portion of the Aquifer Cross-Section
- Case Studies
 - TCE Washout Conceptual Model at Muskegon Site
 - Finding the Transport at a Glacial Outwash Site
 - Forced Washout of Lower-K at Reese AFB
 - Directed Groundwater Recirculation in an Alluvial Fan Aquifer

A New Conceptual Foundation

That Precedes The Conceptual Site Model Development

- Homogeneous
- Isotropic
- Gaussian
- Steady-State

- Heterogeneous
- Anisotropic
- LogNormal
- Perpetual Transient State

New Working Model – Focused on Transport and Storage

- Most soil types are not conductive
- Transport occurs in conductive zones
- Lower-permeability soils serve as contaminant mass storage sites

Re-Casting the Site Hydrogeology Framework

- Contaminant mass transport is often concentrated in a small portion of the aquifer cross-section
- Remedies can be designed to take advantage of this distribution pattern

On-going DNAPL source zone characterization

Factors that Generate Large Plumes

Site Geology

- High-flow aquifers
- Source mass in contact with flow zones
- Long source exposure times

Contaminant

- High aqueous-phase solubility
- Low aerobic biological attenuation rates
- Low matrix sorption potential
- Examples:
 - Chlorination solvents
 - Ethers (MTBE, 1,4-Dioxane)
 - PFOS, nitrates, perchlorate

Re-Thinking Monitoring Wells

- 10-year life-cycle cost of a single monitoring well ~ \$150,000 (construct, develop, monitor and report quarterly, abandon)
- Better approach separate site characterization from monitoring well construction – characterize, then determine most effective monitoring well locations.
- Yields a significant reduction in the number of monitoring wells

Diffusive Exchange and Plume Attenuation

Role of Lower-Permeability Zones

Permeability Structure Across a Range of Settings

Massively Low-K

Bulk Low-K

Bulk High-K

low mass transfer

high mass transfer

Bulk Mid-K

Effective Match-Ups

- Clay/ZVI
- Frac Bypass
- Thermal

- Directed GW Recirc

low mass transfer

high mass transfer

- Forced-Gradient
- Clay/ZVI
- Bio and ChemOx

DirectedGW RecircForced

vertical mix

Field research repeatedly confirms that transverse dispersivity is near-zero

Borden aquifer studies – Rivett, Feenstra and Cherry

Natural aquifers show near-zero transverse dispersivity

Cape Cod Tracer Studies – A broad spectrum of transport velocities

Near-zero transverse dispersivity

A Synopsis of the 'Take-aways'

- Patterns Emerging from Intensified Site Characterization
 - Heterogeneous, anisotropic structure
 - Extreme low dispersivities
- Large-Plume Conceptual Model
 - Transport in transmissive zones
 - Storage in less-transmissive zones
 - Mass exchange rates are a critical factor
- New Opportunities Arise
 - Remedial strategies (e.g., directed groundwater recirculation)
 - Compliance (e.g., dynamic groundwater monitoring)

Beaver Island, Michigan

Impacts and Opportunities

- Contaminant mass transport is often concentrated in a small portion of the aquifer crosssection
- Remedies can be designed to take advantage of this distribution pattern

<u>However,</u>

- High-resolution sampling is also unmasking contaminant mass storage – High-C, Low-K zones
 - Mass transfer behavior controls remedy design and success
 - Now we can identify and target the critical zones

Muskegon Site – TCE Washout Model

Bulk High-K

Muskegon Site - Conceptual Site Model

- High-K sandy aquifer
- 100 ft thickness
- Multiple known sources in the area
- TCE used and disposed via seepage lagoon
- Seepage lagoon excavated in 1975
- Conventional monitoring wells indicated 100 ug/L TCE in groundwater, heading off-site

Muskegon Site – 5 ug/L envelope

Muskegon Site – 100 ug/L envelope

Muskegon Site – 10,000 ug/L envelope

Longitudinal cross-section

Muskegon Site – Downgradient Transects

Transect 1 – 2,600 ft downgradient from source lagoon

Waterloo Profiler output

2,600 ft Downgradient

- Maximum hydraulic response on the Waterloo Profiler over a large portion of the cross-section
- More than ½-mile and 35 years from the source zone.
- TCE concentrated in lower-K zones
- A large plume passed by here

Muskegon Site – On-Going Next Steps

- Extend transect coverage to 1 mile off-site
- Testing MCL-relevant monitoring concept
 - 4-inch, wire-wound stainless wells
 - Pumped at water supply rates for TCE measurement
 - Comparing to vertical aquifer profile results

Case Study: Finding Transport Pathways

- Site located atop a glacial esker – high energy, permeable outwash
- Interbedded high-K sediments with little differentiation.
- Mass flux transect completed immediately downgradient of primary source area.

Hydrofacies Interpretation

 HPT response indicated the shallow lithology is complex with a significant fine grained component.

 Results allowed for VAP sampling bias toward permeable zones.

HPT/VP-05

Groundwater Analytical – Total CVOCs

Where the Transport Occurs

 Mass in shallow interbeds is several hundred fold less mobile than deep zone

HPT/VP-05

Large-Plume Site - Reese AFB, Texas

- Low-mass-transfer aquifer
- Limited zones of Low-K/High-C
- Responsive to Directed Groundwater Recirc

()

2005

Hydrogeologic Interpretation 2007 Secondary transport channels Aggressive in-situ bio Primary transport channel **Directed groundwater recirculation**

Forced-Gradient Distribution

Forced-Gradient ERD Zone

2011 (Jan)

Current status (June 2012): - All wells below MCLs

Next steps:

- System shutdown
- Begin post-tmt monitoring

Bi-Modal Washout in an Alluvial Fan

- Source zone cutoff established
- Clean water insertion
- Washout completed (1 mi) to GSI

A Basis for MCL-Relevant Monitoring

- Higher-resolution mappings are unmasking complex contaminant distribution patterns
- High-K (transport) zones can meet standards, while adjacent low-K (storage) zones significantly exceed standards
- Remedy designs need the higher-resolution mappings to be successful, *however:*
- Low-K zones cannot be treated to MCLlevel compliance.
- MCL-Relevant Groundwater Monitoring is a potential solution:
 - Separate site characterization from compliance monitoring
 - Build and sample monitoring wells to reflect protected use (i.e. drinking water protection)
 - Avoids inevitable application of TI arguments in low-K zones

Questions and Discussion

For more information, contact:

Fred.Payne@arcadis-us.com

40 15 June 2012 © 2012 ARCADIS Business confidential/proprietary information; do not distribute Site Closure Focused, Safety a Priority

