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Metal treatment strategies

Pump and Treat/ Conventional water
treatment facilities

O Groundwater and/or surface water treatment
Olon exchange, reverse osmosis, lime addition, etc.

Constructed wetlands, covers
O Surface water
O Mine wastes

In Situ approaches - groundwater
O Reduction [U(VI) = U(1V)]

Biological: Organic carbon injection
Chemical: Sulfide injection

O Mineral Precipitation
Soluble phosphate injection

Water Table
Treated Water

GW Flow —»
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In Situ: Reactive Barriers



Metal mobllity: importance of redox

Metal
oxidation
state

etal-
binding
ligands J/

Mineral
precipitation/dissolution and
adsorption

Mining and remediation often
perturbs redox state of system

Effect of pH - redox- ligands on
metal mobility

1. Equilibrium
2. Disequilibrium

Opportunity for biotic processes
Kinetics of reactions important

e
4Fe**+0,+ 4H* — 4Fe**+2H.0
3Fe**+6H,0+K*+250,? — K(Fe),(SO,),(OH), + 6H

8Fe**+ 14H,0 + 50,2 —= Fe,0,(OH) (SO,) + 22H"



Fundamental processes and modeling

Improve modeling by increasing fundamental biogeochemical
processes

ldentify key reactions

Reaction Kinetics vs. equilibrium
O Microbial processes

O Precipitation

retardation

stationary
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Biogeochemical modeling

Conceptual mode
biogeochemical
processes: hydrology,
kinefics, solid-solution
inferacfion,
thermodynamics...

1

Quantitative model
Equilibrium and kinetic Code: PHREEQC
processes

Evaluate conceptual

model

Compare to laboratory and
field data

Management tool

Test remediation strategies,
freatment design



Complexity: laboratory = field

Laboratory F|e;i

Batch reactors

Pure cu_ltures (bacteria) In situ experiments

Synthetic water

Pure mineral phases
Column experiments Pilot and full-
Microbial community scale
Site-specific solids treatment/re

mediation

Heterogeneity

Key processes Rates and
complexity



Case study 1: Bioremediation of a uranium-contaminated
aqguifer

Case study 2: Removal of dissolved uranium and surface
passivation of ore by phosphate amendment

Case study 3: Acid mine drainage (AMD) pipeline scaling



Case study 1: Bioremediation at Rifle, CO

Fe(lll) + sulfate - Fe(ll)-sulfides
acetate UV aq 2 UV)

background injection

downgradient monitoring wells
wells wells




In sifu experiment: U(IV) re-oxidation

rates

Seasonalwatertable
fluctuations

Seasonal DO
variations

Microbial activity
(e.g., sulfate

recluction) @03 _—
+ e{ )

- LRI

Rate-speclﬁc reactant
delivery (depends on
permeability)

Rate-specific
removal

Biomass, other surface reactions retard oxidative dissolution

Campbell, KM, et al., ES&T 2011, Bargar et al., PNAS 2013



Acetate U(VI)

Field-scale
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Case study 2: Phosphate

amendment
5Cat*? + 3HPO,? + H,O - Ca,(PO,);OH + 4H* Hydroxylapatite
2H* + 2UO,*? + 2PO,3 > H,(UO,),(PO,), Autinite
l{'____ ___:E
- N\
oo PO * Phosphate amendment effective
Ca® as U(VI) treatment
UM) pos ©& = Can Ca-PO4 precipitation
UVI) passivate surface of U(IV) ores?
Uraninite Ca®

(UO:)

_ do



Rates of precipitation and oxidation

Anaerobic
Bottles ,

‘-‘ < f} o swift urani
e oyt "\ oxidation
e W

Oxic Bottles

U-substituted
hydroxyapatite
growth

W slow urani
A\ oxidation

Next step: U ore column studies
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Uranium remediation: case study 1&2

Bioremediation — reducing conditions
O Challenging to control microbial community

Phosphate amendment — oxidizing or reducing conditions
O Passivation of U(IV) surfaces may prevent continued oxidation

Combined bioremediation/phosphate amendment

Application:

O Insitu recovery (ISR mines)
O Conventional mining

O Legacy sites



Case study 3: acid mine drainage

Lake Shasta

Iron Mountain Mine

Shasta Dam

Sacramento

Leviathan




Precipitation in AMD pipelines - “scale”

Iron Mountain Mine Leviathan Mine

Pipe scale requires costly clean-out at IMM every 2-4 years, and
complete replacement of pipes at LM every year — common problem
In AMD pipelines



Water chemistry at lron Mountain Mine
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Mechanism of scale formation

/ Water only = Biotic Fe(ll) oxidation

Unfiltered -> Water + scale = Biotic Fe(ll) oxidation, effect
water of scale
\ 0o

——> Control = Abiotic Fe(ll)
oxidation

filtration

Iron Mountain Mine
and Leviathan Mine
samples



Mechanism of scale formation

Dissolved Fe(ll)

w
o

’e Abiotic
L] N
controls
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S
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P water
10 -
5 4 .
Unfiltered water + scale
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Fe(ll) oxidation pH< 5 is a biotic process

o
4Fe**+0_+ 4H* — 4Fe**+2H.0



Scale characterization

XRD, SEM

Wet chemical extractions

> -

Total elemental digestion

U deionized water Least aggressive

0.2M ammonium oxalate

0.5M HCI

0.5M HCI

C and N analysis

Microbial community:

* 16S rDNA by 454-pyroseqguencing
* Fe-oxidizing bacteria (MPNS)
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0.5M hydroxylamine HCIl/IOSt aggressive

Schwertmannite
(FegO4(OH),SO,) and

Goethite (FeOOH)
reference compounds



Scale characterization

Schwertmannite (broad
peak) + goethite corundum internal

standard
\ %
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Geochemical model — batch experiments

2 | | I | 1
0 50 100 150 200 250

time (hours)
« Kinetics for microbial Fe(ll)
oxidation
- Based on Michaelis-Menten
enzyme kinetics
- Kinetics depends on substrate
(Fe(ll)) and cell concentration
Kinetically controlled
schwertmannite precipitation
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Geochemical model - field observations

N ” .. : 3.0E-03 SS12
Slug”-style injection of ; Dotted = field data
conservative tracer Li 2.5E-03 | %5510 Solid = model
« Travel times 3 558
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« 3flowregimes: < :
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> Variable velocity in each section of pipeline



Remediation test 1: increased flow

W75 gpm PW3only

8150 gpm PWS3 only
01075 gpm pw3 + SCRR

= N w

S 28 2

S = =
1 1 1

SS12  SS10 SS8 SS6 SS2

 Doubling flow from 75 to 150 gpm slightly decreased amount oxidized
 Highest flow rate (1075 gpm) slowed Fe(ll) oxidation

- Model can be used to simulate effect of running pipeline at higher
flow rates
- Effect on treatment plant operations



Remediation test 2: mixing with low pH water

Fe(T)
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Scale buffers pHto 2.1-2.2

Decreasing pH effective in preventing scale formation



Conclusions

Understanding fundamental biogeochemical processes
Improves conceptual and numerical models

O Balance complexity and broad applicability

Strong links between microbiology, mineralogy, hydrology, and
water chemistry crucial

O Model development
O Site management

Case studies lllustrate treatment approaches

O Surface AMD

O Aquifer bioremediation and phosphate amendment
O Bridge laboratory to field scale
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