Geochemical Modeling to Evaluate Remediation Options for Iron-Laden Mine Discharges

Charles "Chuck" Cravotta III U.S. Geological Survey Pennsylvania Water Science Center cravotta@usgs.gov

Summary

Aqueous geochemical tools using PHREEQC have been developed by USGS for OSMRE's "AMDTreat" costanalysis software:

- ✓ Iron-oxidation kinetics model considers pH-dependent abiotic and biological rate laws plus effects of aeration rate on the pH and concentrations of CO₂ and O₂.
- Limestone kinetics model considers solution chemistry plus the effects of surface area of limestone fragments.
- Potential water quality from various treatments can be considered for feasibility and benefits/costs analysis.

- **Reactions slow**
- Large area footprint
- Low maintenance

Increase pH/oxidation with aeration &/or industrial chemicals Reactions fast, efficient Moderate area footprint High maintenance

ACTIVE TREATMENT

28 % – aeration; no chemicals (Ponds) 21 % – caustic soda (NaOH) used 40 % – lime (CaO; Ca(OH)₂) used 6 % – flocculent or oxidant used 4 % – limestone (CaCO₃) used

Figure 3. Flow chart for selection of passive treatment alternatives modified from Hedin and others (1994), Skousen and others (1998), and Pennsylvania Department of Environmental Protection (1999). Vertical flow compost wetland (VFCW), also known as SAPS or RAPS.

PASSIVE TREATMENT

Limestone Dissolution, O₂ Ingassing, CO₂ Outgassing, Fe(II) Oxidation, & Fe(III) Accumulation

Silver Creek Wetlands

BIMODAL pH FREQUENCY DISTRIBUTION

 \bigcirc

"PHREEQ-N-AMDTREAT"

http://amd.osmre.gov/

SITEMAP

Take the Tutorial

DOI HOME O SMRE HOME

AR HOME TIPS HOME

SUPPORT BUGLIST WISHLIST FRQ DOWNLOAD TEAM PRESS INFO

AMDTREAT 5.0.2 PLUS NOW AVAILABLE!

AMDTreat 5.0.2 Plus corrects minor convergence issues identified during case study tests performed by the developers.

Enhancements to Version 5 of AMDTreat include incorporation of the geochemical modeling capabilities of the U.S. Geological Survey's (USGS) PHREEQ computer program to model titrations and enhancement to the oxidant tool.

For additional information, please contact Brent Means or Omar Beckford.

WHAT IS AMDTREAT?

AMDTreat (Pronounced: am'-D-treat or A-M-D-treat.), a member of OSMRE's Technical Innovation and Professional Services (TIPS) suite of software, is a computer application for estimating abatement costs for pollutional mine drainage, commonly referred to as Acid Mine Drainage or AMD, (Also Acid Rock Drainage or ARD.) The current version of AMDTreat is v5.0.2 Plus. AMDTreat can assist a user in estimating costs to abate water pollution using a variety of passive and chemical treatment types; including, vertical flow ponds, anoxic limestone drains, anaerobic wetlands, aerobic wetlands, bio reactors, manganese removal beds, limestone beds, oxic limestone channels, caustic soda, hydrated lime, pebble quicklime, ammonia, oxidation chemicals, and soda ash treatment systems. The acid mine drainage abatement cost model provides over 400 user modifiable variables in modeling costs for treatment facility construction, excavation, revegetation, piping, road construction, land acquisition, system maintenance, labor, water sampling, design, surveying, pumping, sludge removal, chemical consumption, clearing and grubbing, mechanical aeration, and ditching. AMDTreat also contains several financial and scientific tools to help select and plan treatment systems. These tools include a long-term financial forecasting module, an acidity calculator, a sulfate reduction calculator, a Langelier saturation index calculator, a mass balance calculator, a passive treatment alkalinity calculator, an abiotic homogeneous Fe2+ oxidation calculator, a biotic homogeneous Fe2+ oxidation calculator, an oxidation tool, and a metric conversion tool.

AMDTreat is a computer application for estimating abatement costs for AMD (acidic or alkaline mine drainage).

AMDTreat is maintained by OSMRE.

The current version of AMDTreat 5.0+ is being recoded from FoxPro to C++ to facilitate its use on computer systems running Windows 10. The PHREEQC geochemical models described below will be incorporated to run with the recoded program. MDTreat 5.0.3 + PHREEQ Project: St Michaels

File Defaults Tools Metri-Treat Background Colors Window Help

Sampling	V to
	x \$0
	× \$0
Maintenance	X și
Pumping	X \$0
Chemical Cost 1 0	\$973,674
Oxidant Chem Cost	X \$0
Sludge Removal	X \$0
Other Cost (Annual Cost)	\$0
Land Access (Annual Cost)	\$0
Total Annual Cost:	\$973,674
Annual Cost per 1000 Gal of H20 Treated	\$0.243
A S	
	(mar)
Other Costs	X
Other Costs	X
Other Costs Project St Michaels Company USGS, Cravotta	x
Other Costs Project St Michaels Company USGS, Cravotta Site Name Hydrated Lines No. Accession	X
Other Costs Project St Michaels Company USGS, Cravotta Site Name Hydrated Lime No Aeration Burn Data	X
Other Costs Project St Michaels Company USGS, Cravotta Site Name Hydrated Lime No Aeration Run Date 04/07/2017	X
Other Costs Project St Michaels Company USGS, Cravotta Site Name Hydrated Lime No Aeration Run Date 04/07/2017 Comments	X
Other Costs Project St Michaels Company USGS, Cravotta Site Name Hydrated Lime No Aeration Run Date 04/07/2017 Comments Maelstrom data from Brent Means	X
Other Costs Project St Michaels Company USGS, Cravotta Site Name Hydrated Lime No Aeration Run Date 04/07/2017 Comments Maelstrom data from Brent Means	X
Other Costs Project St Michaels Company USGS, Cravotta Site Name Hydrated Lime No Aeration Run Date 04/07/2017 Comments Maelstrom data from Brent Means	X

the state of the second s		
Design Flow	7600.00	gpm
Typical Flow**	7600.00	gpm
Total Iron	136.00	mg/L
Est. Ferrous Iron	135.99	mg/L
Aluminum	0.35	mg/L
Manganese	4.10	mg/L
pH	5.72	su
Alkalinity as CaCO3	62.80	mg/L
Est. TIC as C	62.00	mg/L
Calculate Net Acidity		
Acidity as CaCO3	205.00	mg/L
Sulfate	1100.00	mg/L
Chloride	38.70	mg/L
Calcium	212.00	mg/L
Magnesium	85.20	mg/L
Sodium	25.50	mg/L
Water Temperature	15.40	с
Specific Conductivity	1879.00	uS/cm
Total Dissolved Solids	1742.00	mg/L
Dissolved Oxygen	0.01	mg/L
Typical Acid Loading	3,413.5	tons/y
Red indicates information used i Black iindicates optional parame Blue indicates information used ** Typical Flow should represent	in critical calcula eters by PHREEQ nt the flow (e.g	ations . median)

AMDTreat 5.0+ Caustic Addition— St. Michaels Discharge

Escape Presentation

"New" PHREEQC Kinetics Models for AMDTreat 5.0+

- FeII oxidation model that utilizes established rate equations for gas exchange and pH-dependent iron oxidation and that can be associated with commonly used aeration devices/steps (including decarbonation);
- Limestone dissolution model that utilizes established rate equation for calcite dissolution and that can be adjusted for surface area of commonly used aggregate particle sizes.

KINETICS OF IRON OXIDATION – pH & GAS EXCHANGE EFFECTS

Iron Oxidation Kinetics are pH Dependent (abiotic and microbial processes can be involved)

Fig. 3. Rate of Fe(II) oxidation versus pH based on abiotic and biological rate laws (Kirby et al., 1999)

** C_{bact} is concentration of iron-oxidizing bacteria, in mg/L, expressed as dry weight of bacteria (2.8E-13 g/cell or 2.8E-10 mg/cell). The AMDTreat FeII oxidation kinetic model uses most probable number of iron-oxidizing bacteria per liter (MPNbact). $C_{bact} = 150 \text{ mg/L}$ is equivalent to MPNbact = 5.3E11, where Cbact = MPNbact ·(2.8E-10).

Abiotic Homogeneous Fe(II) Oxidation Rate (model emphasizes pH)

Between pH 5 and 8 the Fe(II) oxidation rate increases by 100x for each pH unit increase.*

At a given pH, the rate increases by 10x for a 15 °C increase. Using the activation energy of 23 kcal/mol with the Arrhenius equation, the rate can be adjusted for temperature.

 $\log k_{T1} = \log k_{T2} + Ea / (2.303 * R) \cdot (1/T_2 - 1/T_1)$

At $[O_2] = 0.26 \text{ mM} (pO_2 = 0.21 \text{ atm})$ and $25^{\circ}C$. Open circles (o) from Singer & Stumm (1970), and solid circles (•) from Millero et al. (1987).

Dashed lines are estimated rates for the various dissolved Fe(II) species.

Effects of O₂ Ingassing and CO₂ Outgassing on pH and Fe(II) Oxidation Rates

> Batch Aeration Tests at Oak Hill Boreholes (summer 2013)

Control Not Aerated

Aerated

H₂O₂ Addition

PHREEQC Coupled Kinetic Model of CO₂ Outgassing & Homogeneous Fe(II) Oxidation—Oak Hill Boreholes

CO_2 Outgassing is Proportional to O_2 Ingassing (model specifies first-order rates for out/in gassing)

 $-d[C]/dt = k_{1,c}a \cdot ([C] - [C]_{s})$ exponential, asymptotic approach to steady state

New Iron Oxidation Rate Model for "AMDTreat" (combines abiotic and microbial oxidation kinetics)

The homogeneous oxidation rate law (Stumm and Lee, 1961; Stumm and Morgan, 1996), expressed in terms of $[O_2]$ and $\{H^+\}$ (=10^{-pH}), describes the abiotic oxidation of dissolved Fe(II):

 $-d[Fe(II)]/dt = k_1 \cdot [Fe(II)] \cdot [O_2] \cdot \{H^+\}^{-2}$

The heterogeneous oxidation rate law describes the catalytic abiotic oxidation of sorbed Fe(II) on precipitated Fe(III) oxyhydroxide surfaces, where (Fe(III)) is the Fe(III) oxyhydroxide concentration expressed as Fe in mg/L (Dempsey et al., 2001; Dietz and Dempsey, 2002):

 $-d[Fe(II)]/dt = k_2 (Fe(III)) \cdot [Fe(II)] \cdot [O_2] \cdot \{H^+\}^{-1}$

The **microbial oxidation rate law** describes the catalytic biological oxidation of Fe(II) by acidophilic microbes, which become relevant at pH < 5 (Pesic et al., 1989; Kirby et al., 1999):

 $-d[Fe(II)]/dt = k_{bio} \cdot C_{bact} \cdot [Fe(II)] \cdot [O_2] \cdot \{H^+\}$

where k_{bio} is the rate constant in L³/mg/mol²/s, C_{bact} is the concentration of iron-oxidizing bacteria in mg/L (dry weight), [] indicates aqueous concentration in mol/L.

New Iron Oxidation Rate Model for "AMDTreat"— PHREEQC Coupled Kinetic Models of CO₂ Outgassing & Fe(II) Oxidation

Form1						Kinati
						Kineti
FlowGF	PM 100					includ
Fe	19.7					inaaco
🔽 Estin	m <mark>ate Fe</mark> 2	Duration of a	eration (t	ime for reaction)		ingas.
Fe2	19.7	TimeSecs :	2880	0 is 8 hrs		micro
A	0.047	FellOxidation	TimeSe	cs 28800		Const
Mn	3.6					COUS
pН	6.4	kLaCO2	0.0006	CO ₂ outgassing ra	te in sec ⁻¹	
Alk	150	factr.kCO2	1	Adjustment CO ₂ o	utgassing	rate
V Estin	mate TIC	factr.kO2	2	Adjustment O ₂ ing	gassing rate	e (x kLaCO2)
TIC	0	factr.k1Fe	1	Adjustment abioti	c homogei	neous rate
SO4	400	factr.k2Fe	0	Adjustment abioti	c heteroge	eneous rate
а	7.9	bactMPN	5.30E+11	Iron oxidizing bac	teria, micro	obial rate
Ca	79	SIccPPT	0.3	Calcite saturation	limit	
Mg	64	H2O2mmol	0	Hydrogen peroxid	e added*	l Iser i
Na	5.0	factr.kh2o2	1	Adjustment to H2	O2 rate	
TempC	15.1	FelliRecirculate	d Felll	2000		plus I
SC.uS/	cm 1280	Option to spe	ecify Felll	recirculation		snecif
DO	0.1	Generate Kine	tics Output			Speen
	V Plo	t Dis. Metals 📄 Plot Ca	, Acidity	Plot Sat Index		Outpu
						тпс

Kinetic variables can be adjusted, including CO₂ outgassing and O₂ ingassing rates plus abiotic and microbial Fell oxidation rates. Constants are temperature corrected.

Aer3: $k_{L.CO2}a = 0.00056 \text{ s}^{-1}$ Aer2: $k_{L.CO2}a = 0.00022 \text{ s}^{-1}$ Aer1: k_{L.CO2}a = 0.00011 s⁻¹ Aer0: $k_{L,CO2}a = 0.00001 \text{ s}^{-1}$

User may estimate Fe2 from Fe and pH plus TIC from alkalinity and pH. And specify H_2O_2 or recirculation of FeIII. Output includes pH, solutes, net acidity, TDS, SC, and precipitated solids.

Estimated CO₂ Outgassing & O₂ Ingassing Rate Constants for Various Treatment Technologies

	Temper-	CO2	Outgas			O ₂ Ingas	
Site	ature	k,	_{L,CO2} a			k _{L,O2} a	
	(°C)	(s ⁻¹)	log(s ⁻¹)	log(min ⁻¹)	(s ⁻¹)	log(s ⁻¹)	log(min⁻¹)
Treatment Systems							
Maelstrom (Sykesville, Trent, St.Michaels)	20	0.03 Fast	-1.52	0.26	0.06	-1.22	0.56
Surface Aerator (Renton, Rushton)	20	0.001	-3.00	-1.22	0.002	-2.70	-0.92
Mechanical Aerator (Lancashire)	20	0.0006	-3.22	-1.44	0.0012	-2.92	-1.14
Aeration Cascade/Level Spreader (Silver Cr)	20	0.01	-2.00	-0.22	0.02	-1.70	0.08
Rip-rap Spillway/Ditch (Silver Cr, Pine Forest,	20	0.005	-2.30	-0.52	0.01	-2.00	-0.22
Pond (Silver Cr, Pine Forest, Lion Mining, Flight93)	20	0.00001 Slow	-5.00	-3.22	0.00002	-4.70	-2.92
Wetland (Silver Cr, Pine Forest, Lion Mining)	20	0.00001	-5.00	-3.22	0.00002	-4.70	-2.92
Oak Hill Aeration Expts.							
Aer3	20	0.0005625 Fas	t -3.25	-1.47	0.001125	-2.95	-1.17
Aer2	20	0.0002475	-3.61	-1.83	0.000495	-3.31	-1.53
Aer1	20	0.0001508	-3.82	-2.04	0.000302	-3.52	-1.74
Aer0	20	0.0000169 Slo	<mark>w</mark> -4.77	-2.99	3.38E-05	-4.47	-2.69

Table S.4 Values of rate constants for CO₂ outgassing and O₂ ingassing used for kinetic models

*Gas mass-transfer rate corrected to 20°C per Rathbun (1998, Eq. 56) using the expression:

kL,a_20 = kL,a_TC /(1.0241^(TC-20)).

kL,a_TC = kL,a_20 * (1.0241^(TC-20)).

kL,a_20 = $(LN((C_1-C_S)/(C_2-C_S))/t) / (1.0241^{(TEMPC-20)})$, where C is CO₂ or O₂. Dissolved O₂, temperature, and pH were measured using submersible electrodes. Dissolved CO₂ was computed from alkalinity, pH, and temperature data.

Revised AMDTreat Chemical Cost Module – Caustic Titration with Pre-Aeration (Decarbonation) PHREEQC Coupled Kinetic Models of CO₂ Outgassing & Fe(II) Oxidation

FlowGF	PM 7600	C	Caustic Chem	ical Treatr	ment [°]	Type			ontion
Fe	136 mate Fe2		 Hydra Pebble Causti 	ted Lime e Quick Li io Soda	me				hydrog
Fe2 Al Mn	136 0.35 4.1	O	Not Aerated	d Soua					origina
pH Alk	5.72 62.8	۲	Pre-Aerated	J Times	Secs •	76.2 CO ₂ or	Duration outgassing rat	of pre-a e const	ant in sec ⁻¹
TIC SO4 CI Ca Mg Na	62 1100 38.7 212 85.2 25.5		factr.kO2 H2O2mmol factr.kh2o2 SlccPPT	2 0 0 0.3		Adjust Adjust Hydro, Adjust Calcite	ment O_2 ing gen peroxide ment to H_2O e saturation 1	assing 1 assing 1 added p_2 rate imit	Allows variab efficiei
TempC SC.uS/	15.4 /cm 1879		Genera	te Output					

Original option for no aeration, plus new option for **kinetic pre-aeration** (w/wo hydrogen peroxide) that replaces original equilibrium aeration.

Dropdown kLa

PHREEQTitration_StMichaels.exe

Allows selection and evaluation of key variables that affect chemical usage efficiency.

New Module For AMDTreat — PHREEQC Coupled Kinetic Models of CO₂ Outgassing & Fe(II) Oxidation, with Caustic Pre-Treatment

orm1	rei	110	KIC		_25	Voria
		Option to adjus	st initial p	H with caus	tic	Valla
FlowGP	M 8750	Add Chemical to	o Fix pH	7.2		ingas
Fe	16.0	O Hydra	ted Lime			odiu
V Estin	nate Fe2	Pebbl	e Quick Lim	e		aujus
Fe2	16.0	() Caust	ic Soda			reau
AI	0.010	FellOxidation	TimeSe	ecs 72000		in un
Mn	6.2					III UI
pН	6.1	kLaCO2	0.00001	CO ₂ outga	ssing rate	
Alk	107	factr.kCO2	1	Adjustme	nt CO ₂ outgassing	rate
V Estin	nate <mark>TI</mark> C	factr.kO2	2	Adjustme	nt O ₂ ingassing rat	e (x kLaCO2
TIC	0	factr.k1Fe	1	Adjustme	nt abiotic homoge	neous rate
SO4	560	factr.k2Fe	1	Adjustme	nt abiotic heteroge	eneous rate
a	9.4	bactMPN	5.3E+11	Iron oxidiz	zing bacteria	Kine
Ca	120	SICCPPT	0.3	Calcite sat	uration limit	outa
Mg	65	H2O2mmol	0	Hydrogen	peroxide added	outy
Na	13.0	factr.kh2o2	21	Adjustme	nt to H2O2 rate	abiot
TempC	14.5	FelliRecirculate	ed Felll	2000		rator
SC.uS/d	cm 1200	Option to speci	fy Felll re	circulation		Tales
DO	0.1	Generate Kine	tics Output			addit
	V Plot	Dis. Metals 📃 Plot Ca,	Acidity	🔲 Plot Sat In	dex	pero

*multiply Fe.mg by 0.0090 to get [H2O2]

Variable CO_2 outgassing and O_2 ingassing rates apply. Can choose to adjust initial pH with caustic. The required quantity of caustic is reported in units used by AMDTreat.

Caustic + FeII.exe

Kinetic variables, including CO_2 outgassing and O_2 ingassing rates plus abiotic and microbial FeII oxidation rates, can be adjusted by user. In addition to caustic chemicals, hydrogen peroxide and recirculation of FeIII solids can be simulated.

KINETICS OF LIMESTONE DISSOLUTION – pH, CO₂, and SURFACE AREA EFFECTS

Limestone Dissolution Rate Model for AMDTreat ("PWP" model emphasizes pH and CO₂)

According to Plummer, Wigley, and Parkhurst (1978), the rate of CaCO₃ dissolution is a function of three forward (dissolution) reactions: $CaCO_3 + H^+ \rightarrow Ca^{2+} + HCO_3^{-1}$ k_1 $CaCO_3 + H_2CO_3^* \rightarrow Ca^{2+} + 2 HCO_3^{-}$ k_2 $CaCO_3 + H_2O \rightarrow Ca^{2+} + HCO_3^{-} + OH^{-}$ k_3 and the backward (precipitation) reaction: $Ca^{2+} + HCO_3^{-} \rightarrow CaCO_3 + H^+$ K_{Λ}

Although H^+ , $H_2CO_3^*$, and H_2O reaction with calcite occur simultaneously, the forward rate is dominated by a single species in the fields shown. More than one species contributes significantly to the forward rate in the gray stippled area. Along the lines labeled 1, 2, and 3, the forward rate attributable to one species balances that of the other two.

Limestone Dissolution Rate Model for AMDTreat (surface area correction for coarse aggregate)

Surface area for various coarse aggregates (bold indicates sizes commonly used in limestone beds; 2NS used in cubitainers).

Gradation	Number	Weight (g)	Pa	rticle Dime	nsions (c	m)	Particle S	urface Are	ea (cm^2)	Unit Sur	face Area	(cm^2/g)	
AASHTO	PA	Average Particle	Long Axis	Inter- mediate	Short Axis	Average Axis	Rectan- gular Prism	Sphere	Ellipsoid	Rectan- gular Prism	Sphere	Ellipsoid	
R-5		22160.145	45.72	22.86	13.34	27.31	3919.35	2342.26	2862.08	0.18	0.11	0.13	
R-4		7113.133	30.48	16.51	8.89	18.63	1841.93	1089.98	1319.11	0.26	0.15	0.19	
R-3		1185.522	16.51	8.89	5.08	10.16	551.61	324.29	395.61	0.47	0.27	0.33	
1	4	341.978	8.89	6.35	3.81	6.35	229.03	126.68	155.24	0.67	0.37	0.45	÷
3	3A	78.166	5.08	3.81	2.54	3.81	83.87	45.60	56.39	1.07	0.58	0.72	
5		9.771	2.54	1.91	1.27	1.91	20.97	11.40	14.10	2.15	1.17	1.44	
57	2B	3.257	2.54	1.27	0.635	1.48	11.29	6.90	8.25	3.47	2.12	2.53	
	2NS	9.771	2.54	1.91	1.27	1.91	20.97	11.40	14.10	2.15	1.17	1.44	
67	2	1.832	1.91	0.95	0.635	1.16	7.26	4.26	5.28	3.96	2.32	2.88	
	1NS	1.221	1.27	0.95	0.635	0.95	5.24	2.85	3.52	4.29	2.33	2.89	
7		1.221	1.27	0.95	0.635	0.95	5.24	2.85	3.52	4.29	2.33	2.89	
8		0.382	0.95	0.79	0.3175	0.69	2.62	1.49	1.70	6.87	3.90	4.44	
	1B	0.382	0.95	0.79	0.3175	0.69	2.62	1.49	1.70	6.87	3.90	4.44	

Particle dimensions were estimated on the basis of ranges for graded materials reported in Pennsylvania Department of Environmental Protection, 2000, Erosion and sediment pollution control program manual: Harrisburg, Pennsylvania Dept. Environmental Protection Bureau of Watershed Management, Document No. 363-2134-008, 180 p. (tables 9 and 10A).

Plummer, Wigley, and Parkhurst (1978) reported unit surface area (SA) of 44.5 and 96.5 cm²/g for "coarse" and "fine" particles, respectively, used for empirical testing and development of PWP rate model. These SA values are 100 times larger than those for typical limestone aggregate. *Multiply cm²/g by 100 g/mol to get surface area (A) units of cm²/mol used in AMDTreat rate model.*

Surface area computed for various geometric forms:

Sphere: 4pi*(Average of Axes/2)^2

 \bigcirc

Rectangular Prism: 2*(Long Axis*Short Axis)+2*(Long Axis*Intermediate Axis)+2*(Short Axis*Intermediate Axis)

Ellipsoid: $(pi*D^2)/S$, where $D=2*(vol/(4/3pi))^{(1/3)}$

S=1.15-0.25E

E=Long Axis/D

Volume computed for same geometric forms:

Sphere: 4/3*pi*(Average Axis/2)^3

Rectangular Prism: (Long Axis*Short Axis*Intermediate Axis)

Ellipsoid: 4/3*pi* (Long Axis/2*Short Axis/2*Intermediate Axis/2)

For ellipsoid sphere, this reduces to 0.5236*Long Axis*Short Axis*Intermediate Axis

Santomartino and Webb (2007, AG, 22:2344-2361) estimated volume of ellipsoid as 0.6*volume of rectangular prism of same dimensions.

New Module For AMDTreat — PHREEQC Kinetic Model of Limestone Dissolution

**

		TimeSe	cs :	7200 is 2 hrs
FlowGP	PM 690	LimestoneDiss	TimeSe	ecs 7200
Fe	14.0	SAcc	44.5e+02	Surface area , cr
Estir	m <mark>ate Fe</mark> 2	EXPcc	0.67	Equilibrium app
Fe2	14.0	M/M0cc	1.00	Mass available
AI	0.09			
Mn	3.1	**Multiply su	urface are	a (SA) in cm ² /g
рH	5.79	by 100 to get	SAcc in c	m²/mol.
Alk	26			
🛄 Estir	mate TIC			
TIC	42.25			
SO4	330			
CI	4.0			
Ca	56			
Mg	51			
Na	7.4			
TempC	11.63			
SC.uS/	cm 700			
DO	0.4	Generate Kin	etics Output	
		Die Metele 🔲 Diet C		

Calcite dissolution rate model of Plummer, Wigley, and Parkhurst (PWP; 1978). Empirical testing and development of PWP rate model based on "coarse" and "fine" calcite particles with surface areas of 44.5 and 96.5 cm²/g, respectively.

Surface area and exponential corrections permit application to larger particle sizes (0.45 to 1.44 cm²/g) used in treatment systems.

New Module For AMDTreat — PHREEQC Coupled Kinetic Models of Limestone Dissolution & Fe(II) Oxidation

FlowGP	M 690	☑ LimestoneDiss	TimeSe	cs 14240	011
Fe	14.0	SAccDIS	0.72e+02	Surface area	υu
Estin	nate Fe2	EXPccDIS	0.67	Equilibrium approach	OX
Fe2	14.0	M/MOcc	1.00	Mass available	no
AI	0.09	FellOxidation	TimeSe	cs 47015	po
Mn	3.1	🔽 Use Lim	estoneDiss	Effluent	Sy
pН	5.79	kLaCO2	0.00005	CO ₂ outgassing rate	
Alk	26	factr.kCO2	1	Adjustment CO ₂ outgassing	; rate
V Estin	nate TIC	factr.kO2	2	Adjustment O ₂ ingassing ra	te (x kL
TIC	42.25	factr.k1Fe	1	Adjustment abiotic homoge	eneous
SO4	330	factr.k2Fe	0	Adjustment abiotic heterog	geneou
CI	4.0	bactMPN	5.30E+11	Iron oxidizing bacteria	\mathbf{C}
Ca	56		0.3	Calcite saturation limit	Uč
Mg	51	H2O2mmol	0	Hydrogen peroxide added	fol
Na	7.4	factr.kh2o2	1	Adjustment to H2O2 rate	
TempC	11.63	FellIRecirculate	d Felll	2000	UX
SC.uS/	cm 700				WE
DO	0.4	Generate Kine	tics Output		

Rate models for calcite dissolution, CO_2 outgassing and O_2 ingassing, and FeII oxidation are combined to evaluate possible reactions in passive treatment systems.

Can simulate limestone treatment followed by gas exchange and Fell oxidation in an aerobic pond or aerobic wetland, or the independent treatment steps (not in sequence).

PHREEQC Coupled Kinetic Models Sequential Steps Limestone Dissolution <u>+</u> Fe(II) Oxidation Pine Forest ALD + Aerobic Wetlands

ion in 050						
Fe 14.0		Limestone	and Fell K	înetic Consta	nts	
Z Estimate Fe2		EXPccDIS	0.67	M/M0cc	1.00	
Fe2 14.0		factr.kCO2	1	factr.k02	2	
A 0.09		factr.k1Fe	1	factr.k2Fe	0	
Mn 3.1		bactMPN	5.3E+11	SICCPPT	0.3	
oH 5.79		H2O2mmol	0	factr.kh2o2	1	
Alk 26					📄 Felli Re	ecirculate
Estimate TIC	Ste	p Time(s) kLa	CO2(1/s)	SAcc(cm2/m	iol) Temp2(C) Felll(
TIC 42.25	1:	14240	0.00001	0.72e+02	2 11.63	0
504 330	2.	60	0.02	0	11.6	0
	1.1.1			1.1		U
ci 4.0	3:	47015	0.00002	0	12.16	5
Cl 4.0 Ca 56	3: 4:	47015 15	0.00002	0	12.16 12.16	5
Cl 4.0 Ca 56 Mg 51	3: 4: 5:	47015 15 28814	0.00002 0.001 0.00003	0	12.16 12.15	5 0 3
Cl 4.0 Ca 56 Mg 51 Na 7.4	3: 4: 5: 6:	47015 15 28814 15	0.00002 0.001 0.00003 0.02	0 0 0 0 0	12.16 12.16 12.15 12.15	5 0 3 0
Cl 4.0 Ca 56 Mg 51 Na 7.4 TempC 11.63	3: 4: 5: 6: 7:	47015 15 28814 15 21972	0.00002 0.001 0.00003 0.02 0.00002	0 0 0 0 0	12.16 12.16 12.15 12.15 12.04	5 0 3 0
Cl 4.0 Ca 56 Mg 51 Na 7.4 TempC 11.63 SC.uS/cm 700	3: 4: 5: 6: 7: 8:	47015 15 28814 15 21972 15	0.00002 0.001 0.00003 0.02 0.00002 0.02	0 0 0 0 0 0	12.16 12.16 12.15 12.15 12.04 12.04	5 0 3 0 0 0

Sequential steps: Variable detention times, adjustable CO₂ outgassing rates, limestone surface area, temperature, and FeIII.

Next slide

Limestone+FeIIseq.exe

Can simulate passive treatment by anoxic or oxic limestone bed, open (limestone) channels or spillways, aerobic cascades, ponds, and wetlands.

PHREEQC Coupled Kinetic Models Sequential Steps— Pine Forest ALD + Aerobic Wetlands

Step	Treatment
1	ALD
2	Riprap
3	Pond
4	Cascade
5	Wetland
6	Cascade
7	Wetland
8	Cascade
9	Wetland

Limestone+FeIIseq_PineFor151212.exe

LS+FeIIseq_kinetics.sel - Shortcut.lnk

PineForest_Field_151212t.xlsx - Shortcut.lnk

PHREEQC Coupled Kinetic Models Sequential Steps Caustic <u>+</u> Limestone Dissolution <u>+</u> Fe(II) Oxidation Silver Creek Aerobic Wetlands

	-	-	Add C	Chemical to	Fix Initial pH	7.3	
FlowGP	M 750		🔘 Ca	0 O	Ca(OH)2 🤇	NaOH	
Fe	20.0		Limestone	and Fell K	ûnetic Consta	nts	
🔽 Estin	n <mark>ate Fe</mark> 2		EXPcc	0.67	M/M0cc	1.00	
Fe2	20.0		factr.kCO2	1	factr.kO2	2	
AI	0.19		factr.k1Fe	1	factr.k2Fe	0	
Mn	2.95		bactMPN	5.3E+11	SICCPPT	0.3	
pН	6.01		H2O2mmol	0	factr.kh2o2	1	
Alk	45.5					E Felli Re	circula
🔽 Estin	nate TIC	Ste	o Time(s) kLa	CO2(1/s)	SAcc(cm2/m	ol) Temp2(C) Fell
TIC	29.8	1:	4074	0.000001	0	13.91	0
SO4	150	2:	30	0.005	0	14.11	0
a	4.0	3:	493128	0.000001	0	17.93	5
		4:	30	0.005	0	18.41	0
Ca	45.7						
Ca Mg	45.7 28.3	5:	842859	0.000003	0	25.23	3
Ca Mg Na	45.7 28.3 2.6	5: 6:	842859 120	0.000003	0 0.72e+02	25.23 24.45	3 0
Ca Mg Na TempC	45.7 28.3 2.6 12.12	5: 6: 7:	842859 120 112429	0.000003 0.0075 0.000005	0 0.72e+02 0	25.23 24.45 25.55	3 0 0
Ca Mg Na TempC SC.uS/0	45.7 28.3 2.6 12.12 cm 502	5: 6: 7: 8:	842859 120 112429 120	0.000003 0.0075 0.000005 0.0075	0 0.72e+02 0 0.72e+02	25.23 24.45 25.55 24.49	3 0 0 0
Ca Mg Na TempC SC.uS/0 TDS	45.7 28.3 2.6 12.12 cm 502 250	5: 6: 7: 8: 9:	842859 120 112429 120 141927	0.000003 0.0075 0.000005 0.0075 0.000005	0 0.72e+02 0 0.72e+02 0	25.23 24.45 25.55 24.49 28.97	3 0 0 0 0

Sequential steps: Pre-treatment with caustic and/or peroxide and, for each subsequent step, variable detention times, adjustable CO₂ outgassing rates, limestone surface area, temperature, and FeIII.

Next slide

Caustic+Limestone+FeIIseq.exe

Can simulate active treatment, including chemical addition or aeration, *or* passive treatment, including anoxic or oxic limestone bed, open (limestone) channels or spillways, aerobic cascades, ponds, and wetlands.

PHREEQC Coupled Kinetic Models Sequential Steps— Silver Creek Aerobic Wetlands

Caustic+LS+FeIIseq_kinetics.sel - Shortcut.lnk

SilverCrk_Field_160808t.xlsx - Shortcut.lnk

Conclusions

- Geochemical kinetics tools using PHREEQC have been developed to evaluate mine effluent treatment options.
- Graphical and tabular output indicates the pH and solute concentrations in effluent.
- By adjusting kinetic variables or chemical dosing, various passive and/or active treatment strategies can be simulated.
- AMDTreat cost-analysis software can be used to evaluate the feasibility for installation and operation of treatments that produce the desired effluent quality.

\bigcirc

References

- Burrows JE, Cravotta CA III, Peters SC (2017) Enhanced Al and Zn removal from coal-mine drainage during rapid oxidation and precipitation of Fe oxides at near-neutral pH: Applied Geochemistry 78, 194-210.
- Cravotta CA III (2003) Size and performance of anoxic limestone drains to neutralize acidic mine drainage: Journal of Environmental Quality 32, 1277-1289.
- Cravotta CA III (2015) Monitoring, field experiments, and geochemical modeling of Fe(II) oxidation kinetics in a stream dominated by netalkaline coal-mine drainage, Pennsylvania, U.S.A. Applied Geochemistry 62, 96-107.
- Cravotta CA III, Means B, Arthur W, McKenzie R, Parkhurst DL (2015) AMDTreat 5.0+ with PHREEQC titration module to compute caustic chemical quantity, effluent quality, and sludge volume. Mine Water and the Environment 34, 136-152.
- Davison W, Seed G (1983) The kinetics of the oxidation of ferrous iron in synthetic and natural waters. Geochimica et Cosmochimica Acta 47, 67-79.
- Dempsey BA, Roscoe HC, Ames R, Hedin R, Byong-Hun J (2001) Ferrous oxidation chemistry in passive abiotic systems for the treatment of mine drainage. Geochemistry: Exploration, Environment, Analysis 1, 81-88.
- Dietz JM, Dempsey BA (2002) Innovative treatment of alkaline mine drainage using recirculated iron oxides in a complete mix reactor. American Society of Mining and Reclamation 19th Annual Meeting, p. 496-516.
- Geroni JN, Cravotta CA III, Sapsford DJ (2012) Evolution of the chemistry of Fe bearing waters during CO₂ degassing. Applied Geochemistry 27, 2335-2347.
- Kirby CS, Elder-Brady JA (1998) Field determination of Fe²⁺ oxidation rates in acid mine drainage using a continuously-stirred tank reactor. Applied Geochemistry 13, 509-520.
- Kirby CS, Thomas HM, Southam G, Donald R (1999) Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Applied Geochemistry 14, 511-530.
- Kirby CS, Dennis A, Kahler A (2009) Aeration to degas CO₂, increase pH, and increase iron oxidation rates for efficient treatment of net alkaline mine drainage: Applied Geochemistry 24, 1175-1184.
- Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, New Jersey, USA, 600 p. (especially p. 58-62)
- Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—A computer program for speciation, batchreaction, one-dimensional transport, and inverse geochemical calculations. USGS Techniques Methods 6-A43, 497 p.
- Pesic B, Oliver DJ, Wichlacz P (1989) An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of *Thiobacillus ferrooxidans*. Biotechnology and Bioengineering 33, 428-439.
- Plummer LN, Wigley ML, Parkhurst DL (1978) The kinetics of calcite dissolution in CO_2 -water systems at 5° to 60°C and 0.0 to 1.0 atm CO_2 . American Journal of Science 278, 179-216.
- Rathbun RE (1998) Transport, behavior, and fate of volatile organic compounds in streams: USGS Professional Paper 1589, 151 p.
- Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167, 121-123
- Stumm W, Lee G.F. (1961) Oxygenation of ferrous iron. Industrial and Engineering Chemistry 53, 143-146.
- Stumm W, Morgan JJ (1996) Aquatic chemistry--chemical equilibria and rates in natural waters (3rd): New York, Wiley-Interscience, 1022 p. (especially p. 682-691)