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The Oak Ridge S3 ponds

1951-1984 : wastes stored in unlined ponds
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Major groundwater contaminants

Depleted uranium: 40-50 mg/L
(EPA standard 30 pg/L)

Strong acids: pH 3.4-3.6, 8-10 g/L nitrate, 1 g/L sulfate

Chlorinated solvents: 2-3 mg/L PCE, 1 mg/L cDCE

Metals: 540 mg/L Al, 930 mg/L Ca, 11-14 mg/L Ni




Figure A2. Contaminant Migration
Pathways at the S-3 Ponds
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Geology

» Highly interconnected fracture network with 100-
200 fractures/m.

» Fractures are < 5-10% of the total porosity, but
carry >95% of the flow.

* Fractures are surrounded by a high porosity, low

permeability matrix that is a source and sink for
contaminants.




Uranium Geochemistry
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At the S3 ponds, the solid phase is a long-term source of U (VI).

The aqueous phase U concentrations exceed the U.S. EPA
drinking water standard by over 1000 times. But most of the U is
still on the soil, as illustrated by the sorption isotherm at pH 4.
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Complexes at surfaces:

Source: Catalano (2004)

U sorption and desorption are
strongly pH dependent.
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Chemistry considerations

High U(VI) on solid phase: is it accessible?

~98% on the soil (~400 mg/kQ)

~2% in groundwater(~ 40 mg/L) - 40 mg U/L inhibits sulfate-
reducer growth

Low pH (~3.5): bad for robust microbial activity
buffered by Al?*acidity (~20 mM), Al precipitates at pH 4.5-5

High NO;: inhibits U(VI) reduction, precursor to N, clogging,
oxidizes U(IV), present in the matrix
130-480 mM in groundwater

High Ca?*: inhibits U(VI) reduction at 5 mM; precipitates at pH>7
~20 mM in groundwater

UO,(CO,) + H* + 2e- = UO, + HCO;- E° =+0.105V
Ca,U0,(CO,); +2e =2Ca?*+ U0, +3CO,> E”=-0.046V
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Overview

» Selection of a treatment zone
« Gaining hydraulic control
* Flushing and conditioning

e Biostimulation

« Stability tests




Location: adjacent to the source zone.

Rationale:

The source zone IS a reservoir of
U(VI) for long-term groundwater and
surface water contamination.

Conversion of solid-associated U(VI)
into highly insoluble U(IV) will
prevent dissolution and desorption,
decreasing the time and cost of

remediation.




Overview

» Selection of a treatment zone
* Gaining hydraulic control
* Flushing and conditioning

e Biostimulation

« Stability tests




Stepwise strategy

Step 1: Establishing hydraulic control

e Nested recirculation wells
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Step 2. Conditioning of subsurface
by removal of clogging agents and
iInhibitors

« Acidified clean water tracer study
and flush

« Aboveground removal of
clogging agents and inhibitors

* pH Increase



MLS wells

QuickTime™ and a
TIFF (PackBits) decompressor
are needed to see this picture.




Effect of tracer

clean water flush
on nitrate in MLS _ ——
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Removal of clogging agents and pH adjustment

1. Recirculate and flush at pH 4-4.5
Sorption of U increases compared to pH 3.4
While recirculating, remove clogging and
Inhibitory agents ex-situ: Al, Ca, NO; , VOCs, N,

2. Recirculate and flush at pH 6-6.3

Sorption of U now becomes maximum
Favorable for SRB and FeRB, but not

methanogens




=

Source
well tap

‘ Injection

water tank tank Ba9 tank

Outer
loop
injection
well

ABOVEGROUND PROCESS TRAIN

Mixing Settling Mixing Settling CO,
tank tank tank tank

%g ﬁé pH
|
Vacuum Vacuum l

stripper

stripper
tank

Solids
holding
tanks

GAC
separator

T
#‘3,‘: i

[ Y
11-
-

Fllters Settling Filtration

filter

FBR






Nitrate removal at injection extraction wells
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Al and Ca removal at injection extraction wells
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Overview

» Selection of the treatment zone
» Gaining hydraulic control (stepl)
* Flushing and conditioning (step 2)

* Biostimulation (step 3)

« Stability tests




Strip volatiles,
neutralize acid,
precipitate metals
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3 Biofouling of pump intake on inner
loop extraction well - Day 245




Surging allowed sediment sampling

Anaerobically collected sediment

Surge block in use
Surging pulls sediment from around the well screen into the well

Sediment is pumped to surface after settling

: Anaerobically stored at 4 °C until time of analysis
Preparing to surge

Mounted as a wet paste for spectroscopy




pH in inner loop injection and extraction
wells during biostimulation
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Nitrate removal during biostimulation

Conditioning Bioremediation
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Sulfate in inner loop injection and
extraction wells
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Dissolved U(VI) concentrations during biostimulation (Day 160-preset)
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Key Findings

1. Ethanol adddition stimulated In situ
bioreduction of U(VI).

2. U(VI) concentration dropped below
EPA MCL.

3. Sulfate reduction and Fe(lIl)
reduction were concomitant with
U(VI) reduction.

4. U(IV) was stable under
controlled anaerobic conditions

Maximum

; — concentration of

uranium in drinking
water of 0.03 mg/l
(USEPA)is
achievable.

O, removed from outer

loop



Depth, ft

Aqueous U Iin the MLS Wells:
Before and After

EPA MCL for U (< 0.03 mg/L)
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Uranium (uM)

Solid Phase Uranium Speciation

Extraction Well
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The sediment changes color as reduction progresses
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Sediment from the treatment zone give visual evidence of reduction
and expansion of the zone of reduction

Nested Well System

Outer loop:
FWO024 (injection)
FW103 (extraction)

Inner loop:
FW104 (injection)
FWO026 (extraction)

Samples from FW102 at
| \] ‘ o 45ft, 40 ft, 35ft and 30ft.

Samples from FW100 at
45ft, 40 ft, 35ft and 30ft.

e

SIS N
FW100 W11 o
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Samples from FW024,
FW104, FW026, FW103
and FW105 (down
gradient well).

Samples from FW101 at
45ft, 40 ft, 35ft and 30ft.



Example
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(days 399-409):
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Model calibration: ethanol and bromide tracer study
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Reactive transport simulation (Days 399-409)
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Snapshot of dominant sediment organisms
(Day 774)

Groups listed comprised at least 5% of the total 16S
rRNA gene clone libraries.

. Relative abundance (% of total clones)
Dominant
Family Genus 104 101-2 101-3 102-2

Desulfovibrionaceae Desulfovibrio
Geobacteraceae Geobacter

Rhodocyclaceae Ferribacterium

Hydrogenophilaceae Thiobacillus

Acidobacteraceae Geothrix
Oxalobacteraceae Duganella
Xhantomonadaceae Rhodanobacter
Commanonadaceae Acidovorax
Sphingomonadaceae Sphingomonas

other families

Source: Cardenas et al., unpublished data




Time series for wells FW-101-2 and FW-104

(source: Hwang et al., unpublished)

FW-101-2 FW-104
166d | Unc. bacterium clone 300I-F12 (26%) Unc. bacterium clone 300I-F12 (23%)
Herbaspirillum sp. isolate G8A1 (39%) Herbaspirillum sp. isolate G8A1 (27%)
Unc. soil bacterium clone D04 (11%)
535d | Acidovorax delafieldii isolate N7-18 (10%) | Unc. Sludge bacterium H22 (15%)
Acidovorax delafieldii isolate N7-18 (7%) Unc. bacterium clone 300I-F12 (7%)
Unc. d-proteobacterium clone 1777136 Unc. Bacterium clone 015B-B03 (7%)
(6%) Acaligenes defragans strain:PD-19 (6%)
Unc. Actinobacteriaceae clone Hrh678 Dechlorosoma sp. C6 (10%)
(6%)
Dechlorosoma sp. C6 (5%)
641d | Unc. bacterium clone TTMF87 (16%) Unc. d-proteobacterium clone 177136

Unc. d-proteobacterium clone 177136
(14%)

Unc. Desulfovibrionacaceae bacterium
(7%)

Desulfovibrio magneticus (6%)

Unc. d-proteobacterium clone 036T7
(9%)

Unc. Geobacter sp. clone KB-1 1 (7%)
Unc. Phyllobacterium sp. clone Ph (6%)

Dhi=-Ahit1im e ODI\WAWA/NEQ /207 \

(17%)

Unc. Desulfovibrionacaceae bacterium
(4%)

Desulfovibrio magneticus (2%)

Unc. Actinobacteriaceae clone Hrh678
(7%)

Unc. &-proteobacterium clone 036T7 (6%)
Unc. Geobacter sp. clone KB-1 1 (4%)



Overview

e Selection of a treatment zone
» Gaining hydraulic control (step 1)
* Flushing and conditioning (step 2)

* Biostimulation (step 3)

e Stability tests




Changes in DO in the inner and outer loop
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Conclusions

« Stepwise remediation enabled process control & gave
iInsight into mechanisms. Useful steps: geophysics, tracer
studies, removal of inhibitors and clogging agents, pH
control over sorption/desorption.

* The nested recirculation scheme is a useful pilot-scale
strategy for highly contaminated sites.

* Very low aqueous phase concentrations can be achieved
despite high solid phase concentrations. This is evidently
due to the low solubility of U(IV) and low rates of
desorption/dissolution relative to rate of reduction.

* For the anaerobic conditions tested (bicarbonate < 5 mM,
Ca < 0.5 mM, pH near 6.0), bioreduced U(IV) is stable.
Oxygen and nitrate reoxidize U(lV) in current system.
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