Use of Mass Discharge as a Performance Metric in CERCLA Decision Documents

Case Study of the Time Oil Well 12A Site

Presented by: René Fuentes EPA Region 10

FRTR General Meeting November 14, 2012 Arlington, Virginia

CDM Smith

Acknowledgments

- Kira Lynch
- Howard Orleans (EPA Region 10)
- Tamzen Macbeth (CDM Smith)

Presentation Context

- Many CERCLA decision documents for dense non-aqueous phase liquid (DNAPL) site remediation lack clear remedial action objectives for determining and documenting when sufficient source treatment has been completed.
- Mass flux /discharge can be used to document when source treatment is considered "complete" and long-term groundwater restoration projects considered operational and functional.
- Discuss how mass flux /discharge goals can be incorporated into long-term plume management strategies with ultimate goals of meeting Maximum Contaminant Levels (MCLs).

Well 12a Case Study: Applying Mass Flux/Mass Discharge

- Well 12A is a case study for how to evaluate a Remedy treatment of dense nonaqueous phase liquid (DNAPL) source.
- Discuss the process of how mass flux/discharge was incorporated into:
 - Record of Decision (ROD).
 - Technology Selection,
 - Remedy Design,
 - Optimization of the Remedy

Contamination Summary

- Six COCs in soil and groundwater
 - PCE
 - TCE (ubiquitous)
 - cis-1,2 DCE
 - trans-1,2 DCE
 - Vinyl Chloride
 - 1,1,2,2-PCA

2D Perspective: TCE Plume

Historical RA Summary

- 1983- Original signed ROD
 - Wellhead treatment system at Well12A
- Groundwater Extraction Treatment System (GETS)
 - **-** 1988 **-** 2001
 - 550 million gallons of groundwater extracted/treated,
 - removed 16,000 pounds VOCs
- Vapor Extraction System (VES)
 - 1993 1997/Removed 54,100 pounds VOCs
- Filter cake/contaminated soil removal
 - BNRR excavated 1,200 cy along rail line
 - VES construction/removed 5,000 cy of filter cake

Desired End State

- Adequate use of robust source removal technologies.
- <u>Timely transition</u> to cost-effective 'polishing' step(s).
- Reduce/eliminate need for pump and treat.
- Appropriate reliance on monitored natural attenuation (MNA).
- Adaptive, flexible implementation
 - "Sources begin to reveal themselves as remediation progresses"

Building the Well 12A Remedy

Focused Feasibility Study evaluation:

Reduce source strength (Md) by 90%, MNA sufficient to achieve compliance

ROD amendment:

Multi-component remedy- reduce source discharge Md by 90% & transition technology (if necessary)

Well 12A Superfund Site, WA

Performance metric remedy
 Operational and Functional

Summary of Site Characterization

- •34 soil borings to reduce uncertainty and delineate sources.
- •12 locations for vertical profiling.
- •Depth discrete samples:
 - Groundwater

 - Slug testing.
 - Stratigraphy
- Gradient assessment.

Vertical Characterization

VP-101

Offset = 6 ft NW

VP-101

TCE (ug/L)

Horiz.

K (ft/d)

TCE

Qpoge

(ug/kg)

Hydraulic Conductivity: Slug Testing

Stratigraphic Unit	Range Horizontal K (ft/d)	K (ft/d)	Vertical K (ft/d) ^a		
Average K per Stratigraphic Unit Used in MVS					
Qva	7-56 (n=4)	21	5.18		
Qpf	0.12-0.5 (n=2)	0.3	NA		
Qpfc	0.5-3555 (n=14)	293	0.79		
Qpogc	0.6-2 (n=5)	1	0.30		
Qpogt	0.5 (n=1)	0.5	0.03		
Average K per Depth Measured in Qpfc					

Average Horizontal

 Depth Interval (ft bgs)
 Number Samples
 Horizontal K (ft/d)

 Qpfc1
 50-60
 5
 35

 Qpfc2
 70-75
 5
 782

 Qpfc3
 80-90
 4
 13
 2

Vertical Stratification of the Groundwater Contaminant Plume

Cross Section of Contaminant Plume

Mass Discharge Across Transects

	Total VOC MD						
	(kg/yr)	% of Total MD					
Transect 1							
Qva	0.1	1%					
Qpfc1/Qpf	2.9	31%					
Qpfc2	_{5.9} 96 9	64 %					
Qpfc3	0.06	1%					
Qpogc	0.3	4%					
Total	9.3						
% of Total							
Transect 2							
Qva	0.01	0.4%					
Qpfc1/Qpf	0.2	7%					
Qpfc2	1.7	57%					
Qpfc3	0.1	3%					
Qpogc	1.0	33%					
Total	16 3.0						

Mapping Technologies

			N.
Zone	Surface	VOC	%
	Area (ft²)	Mass	Discharge
		(kg)	to GETS
Excavated Zone	3819	510	NA
Thermal	11,746	~189	70 kg/yr
Treatment Zone			
In Situ	162,005	~245	25 kg/yr
Bioremediation			

Treatment Zones: Selecting Vertical Intervals

Challenges with Mass Discharge at Well 12A

- Assessing impacts from secondary sources, residual phase contaminants and back diffusion from low permeability layers.
- Managing complex hydraulics, including substantial changes in gradient magnitude and direction due to seasonal variations and operating Well 12A.
- Obtain realistic parameters such as porosity and hydraulic conductivity within vertically-discrete zones within the contaminant plume.

Site Gradient

Calculating Mass Discharge: Transect Method

Steps for Well 12A:

- 1. Draw polygons (use Theissen)
- 2. Calculate Darcy velocity (q) for each polygon: q=K•I
- 3. Characterize polygon flux (Mf=q•C_n)
- 4. Determine area (W b = A)
- 5. Evaluate mass discharge:

$$M_d = \Sigma (Mf \cdot A_n)$$

 $M_f = Mass flux$

 M_d = Mass discharge

 C_n = concentration in polygon n

 A_n = Area of segment n

Transect 1

Mass Discharge: Pumping Test

- Capacity 500 gpm
- Screens 50-70 ft bgs
- Operation
 - EW-1, 40 gpm
 - EW-2, 8-16 gpm
 - EW-3, 7-9 gpm
 - EW-4, 6-15 gpm
 - EW-5, 6-12 gpm
- Mass Rate Treated (kg VOCs/yr)
 - EW-1, 4-8
 - EW-2, 4-12
 - EW-3, 8-12
 - EW-4, 24-48
 - EW-5, 24-48

Site Specific Uncertainties with Pumping Method

Uncertainty

- Pumping induced changes to natural flow regime
- Impacts of secondary sources on mass discharge assumptions
- Increase gradients through significant contaminant sources

Impact to the Estimate

- Potential to draw water from low permeability zones that would not normally contribute mass flux
- Potential to enhance dissolution/diffusion from sources increase estimates
- Potential that mass discharge from "sources", i.e. Qpog_c and Qpf_c downgradient of pumping wells not accounted for.

What's Next?

- Assess critical information needed to determine if can use GETS to evaluate mass discharge,
- Determine if additional field data is needed to evaluate mass discharge methods,
- Pick a mass discharge measurement method,
- Measure baseline mass discharge,
- Implement ISTR, and EAB remedial actions to achieve mass discharge reduction goal,
- Two post-RA mass discharge,
 - 1st ~18 months post-Bioremediation,
 - 2nd contingency if additional Bioremediation needed to achieve objective.

Conclusions

- Mass Flux and Mass Discharge can improve management of complex contaminant sites and new technologies are increasing the confidence in these metrics.
- Use of new technologies has significantly improved remedial decision-making in developing, designing and implementing Remedial Actions.
- Well 12A will be a case study in how to use these approaches under the Superfund regulatory framework.

Questions and Answers

