

Proudly Operated by Baffelle Since 1965

Science for a changing world

Demonstrating A Geophysics Strategy for Minimally Invasive Remediation Performance Assessment

TIM C. JOHNSON¹, FRED D. DAY-LEWIS², LEE D. SLATER³, PAULINE KESSOURI³, STEVEN HAMMETT⁴, DIMITRIS NTARLAGIANNIS³, AND BRADY LEE¹

¹ Pacific Northwest National Laboratory

² U.S. Geological Survey

³ Rutgers University

⁴ Naval Facilities Engineering Command

Federal Remediation Technology Roundtable, November 2, 2016

Outline

Pacific Northwest

Proudly Operated by Baffelle Since 1965

- Basic Theory and Operation
 - Deployment, measurements, processing
- Application Sampler
 - Characterization Imaging
 - Time-lapse Imaging
 - Real Time Imaging
- Managing Expectations, Limitations and Pitfalls
 - Consequences of Limited Resolution
 - Tools and Approaches for Reducing Risk

Case Study

Brandywine M.D. Defense Reutilization Marketing Office

Electrical Imaging Step 1: Deploy Data Collection Hardware

Proudly Operated by Battelle Since 1965

Surface Electrode Array

Borehole Electrode Array

Step 1: Electrode arrays are installed in the field and connected to a data collection system.

Data Collection System

Step 2: Collect Tomographic Data

Proudly Operated by Battelle Since 1965

Current Injection and Potential Field

Step 2:

- Current is inject between a pair of electrodes
- Voltage is measured across another pair
- Many such measurements are collected to form a tomographic data set.

Step 3: Convert measurements to images via tomographic inversion

Step 3:

- Data sets are inverted to recover "images" of electrical properties
- Static images show absolute properties
- Time-lapse images show changes over time
- Conductive and capacitive properties

Pacific Northwes

NATIONAL LABORATORY
Proudly Operated by **Battelle** Since 1965

What can electrical properties tell us about the subsurface?

Proudly Operated by Baffelle Since 1965

A geophysical property dependent on many subsurface properties....

m and *n* are exponents related to pore space connectivity/tortuosity

The Detection Problem: Finding a plume

 \rightarrow Plume is masked by geologic heterogeneity

Time Lapse Difference Imaging

Pacific Northwest

Proudly Operated by Battelle Since 1965

8

 \rightarrow Plume is revealed by subtracting out pre-injection background, removing unrelated spatial contrasts; i.e., we removed the haystack

Implementation Example 1: Imaging Vadose Zone Contamination (Hanford)

Proudly Operated by Battelle Since 1965

High conductivity zones correspond to elevated saturation and high nitrate concentrations from past waste infiltration.

2006/2007 Surface ER Survey

Octtober 227, 2206 6

Data courtesy HydroGeophysics, Inc.

Implementation Example 1: B-Complex 3D-ERT Fly around View

Proudly Operated by **Battelle** Since 1965

Hanford B-Complex Subsurface Contaminant Imaging

Log10 Electrical Conductivity (S/m)

animation

Example 2: Time-lapse monitoring of stage-driven river water intrusion

Proudly Operated by Battelle Since 1965

Fluid conductivity (e.g. specific conductance) contrast between river water and groundwater enables river water to be imaged as it infiltrates into the aquifer during high stage.

Example 3: Real-Time monitoring of amendment delivery via surface infiltration

Proudly Operated by Battelle Since 1965

Plan view of 300 Area Treatment Site

- ~ 10 m thick uranium contaminated vadose zone
- saturated zone hydraulically connected to Columbia River
- phosphate amendment binds uranium to sediments

Proudly Operated by **Battelle** Since 1965

Example 3: Results

7:04 AM 11/6/15

Delta Cond. (S/m)

0.000 0.001 0.003 0.004 0.005

animation

Example 3: Real Time Web Delivery

 → C
 ^[1] phoenix.pnnl.gov/slice/

olyphosphate Injection

🥖 门 🧕 🗾 🖉 🜍

¶☆ =

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by **Battelle** Since 1965

Proudly Operated by Baffelle Since 1965

Developing Realistic Expectations

Proudly Operated by **Battelle** Since 1965

Pros:

- Minimally invasive
- Relatively low cost
- Can cover a large area
- 'Sees' in between wells
- Good at the "when and where"

Developing Realistic Expectations

Proudly Operated by Battelle Since 1965

Pros:

- Minimally invasive
- Relatively low cost
- Can cover a large area
- 'Sees' in between wells
- Good at the "when and where"

Cons:

- Indirect correlation or interpretation requires
- Limited resolution
- Not good at the "what"

Not an either/or proposition! Geophysics is most powerful when used in combination with conventional measurements!

Consequences of Limited Resolution

3D Images

Increase level of prior information

Consequences of limited resolution

- Images are smeared versions of reality
- Averaging (high values are underpredicted, low values are overpredicted)
- Laboratory scale measurements do not translate directly to field scale
- Resolution decreases with distance from electrodes
- Prior information can improve resolution (buyer beware)

Beware of Misuse/Overselling

Proudly Operated by Battelle Since 1965

- Blatant overselling of capabilities by service providers is common
- Tools and approaches are available to test feasibility and reduce risk

Bottom Line:

/ Highly resistive (ORANGE/RED) - high dissolved phase concentrations and/or DNAPL

- / Moderately increased resistivity (YELLOW) low dissolved phase concentrations
- Medium resistivity (GREEN) mostly clean or low impact areas
- \checkmark Low resistivity/highly conductive ($\underline{\text{BROWN}}$) weathered (likely) DNAPL and/or related dissolved phase contamination

Managing expectations and reducing risk through pre-modelling feasibility assessment

Proudly Operated by Baffelle Since 1965

Note ... represents best case scenario

Example: Pre-modelling a DNAPL Spill

More info at:

https://www.serdp-estcp.org/Toolsand-Training/Webinar-Series/07-28-2016

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

https://www.serdp-estcp.org/Toolsand-Training/Webinar-Series/06-30-2016

100 http://water.usgs.gov/ogw/frgt

http://e4d.pnnl.gov

 \rightarrow Borehole electrodes substantially improve resolution of the plume

500

50

Case Study: Brandywine M.D. DRMO

Proudly Operated by Baffelle Since 1965

Brandywine Defense Reutilization Marketing Office (DRMO)

- Eight-acre former storage facility owned by Andrews AFB
- Contaminated with PCE (soil) and TCE (groundwater), both onsite and offsite
- Record Of Decision specified enhanced bioremediation
- Amendment injections occurred 2008-2010
- Original ESTCP project: Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis (ER200717), Major et al. (2014)

Primary Objective: Demonstrate the capability to autonomously image 3D bioamendment distribution with time.

Test Site Configuration

Baseline ERT Image

ER 200717 Imaging Results

Proudly Operated by Baffelle Since 1965

Summary

- Successfully imaged the 3D emplacement and migration of amendment.
- Observed secondary increase in conductivity within the treatment zone after about 1 year.
- Validated the cause of the secondary increase to be bio-induced solid-phase transformation (likely FeS precipitation).

Johnson, T.C., Versteeg, R.J., Day-Lewis, F.D., Major, W., and Lane, J.W., 2015. *"Time-Lapse Electrical Geophysical Monitoring of Amendment Emplacement for Biostimulation"*, Ground Water53(6):920-932. doi:10.1111/gwat.12291

Proudly Operated by Battelle Since 1965

Post Remediation Assessment Objectives

- 1. Identify the long-term geophysical footprint of active bioremediation at a VOC contaminated site.
- 2. Determine the significance of the geophysical footprint with respect to solid phase mineral transformations and/or biofilms induced by the treatment process.
- 3. Demonstrate the use of 1 and 2 above to map gradients in the geophysical footprints of biostimulation along a transect crossing the boundary of the treatment area at an active remediation site, and interpret those gradients in terms of long-term biogeochemical impacts.

Crosshole Imaging/Fluid Sampling Arrays

Eight vertical arrays installed via direct push

- Each array includes 24 electrodes and 3 fluid sampling ports
- Enables 3D crosshole imaging directly in the ER0717 injection zone
- Enables 2D crosshole imaging inside and outside of the treatment area.
- Enables depth-discrete pore fluid sampling inside and outside of treatment zone

Core Sampling/Logging Holes

Four continuous core boreholes completed with pvc

- Enables direct lab measurement of electrical geophysical properties with depth, inside and outside of treatment zone
- Enables assessment of microbial communities and biogeochemical solid phase product inside and outside of treatment zone.
- Enables 1D geophysical logging profiles.
 - Critical to relate
 field-scale images to
 long-term
 biogeochemical
 impacts

Surface Imaging Arrays

Surface ERT Arrays

- Enables evaluation of larger scale, lower resolution, less expensive surface based imaging for impact assessment.
- Enables inspection of the treated-to-untreated transition zone.

Borehole Imaging Results

Proudly Operated by Battelle Since 1965

- High phase (polarization) in the treated zone relative to untreated
- Highest polarization and conductivity occur in the vicinity of the injection well (profile xi-2)

Project Status

Summary

- Remediation performance assessment using geophysical imaging is advancing
 - Reduced monitoring costs, autonomous, continuous in space and time, minimally invasive, good at the "when and where"
- Important to understand limitations, avoid overselling
 Feasibility and expectations through pre-modelling
- ► Quantitative interpretation requires coupling with laboratory analysis → site specific relationships between geophysical and geochemical parameters → mapping geochemical property estimates

Proudly Operated by Battelle Since 1965

science for a changing world

Proudly Operated by **Battelle** Since 1965

Science for a changing world

Supplementary Slides

Engineered Vadose Zone Desiccation

Autonomous 3D Monitoring of Vadose Zone Desiccation

Time-lapse 3D imaging of engineered vadose zone desiccation

animation

Real Time Imaging of Flow in Fractured Rock

Proudly Operated by Battelle Since 1965

Proudly Operated by Baffelle Since 1965

36

Real-time Imaging

Challenges

- Wireless communications
- Secure supercomputer access
- Coordination between supercomputer and field system
- How do we set the inversion parameters before we see the data?

Proudly Operated by **Battelle** Since 1965

ttp://e4d.pnl.gov

